DEGENERATIVE DISORDERS

INHERITED METABOLIC DISORDERS

- Tay Sachs
 - > AR, HEXA @ chr15

NOT METABOLIC

- Variant Cruietzfeldt-Jackob (BSE)
 - > prions
- Parkinsons's Disease
 - > AD (chr4)-SNCA mutation
 - > AR (chr6)- Parkin mutation
 - > sporadic
- Huntington's Disease
 - > AD mutation-Huntingtin (htt)
- Alzheimer's Disease
 - > idiopathic
 - > Traumatic brain injury
 - > APP @ chr21
 - > Presinilin @ chr1&14
 - >ApoE4
- Multiple Sclerosis
 - > autoimmune

TAY SACH'S DISEASE

- Causes brain to swell and damage itself against the inside of the skull and dura mater
- Metabolic "storage" disease; a type of **sphingolipidosis**.
 - 1 or more enzymes are missing, waste products cannot be destroyed by lysosomes.
 - Lysosomes get larger, cells get larger, brain swells
- Symptoms: begin around 4 months
 - Exaggerated startle response
 - Listlessness
 - Irritability
 - Spasticity
 - Seizures
 - Dementia
 - death
- inherited: AR; a genetic mutation in the <u>HEXA</u> genes on <u>chromosome 15</u>.
 - Results in problems with an <u>enzyme</u> called <u>beta-hexosaminidase A</u> which results in the buildup of the molecule <u>GM2 ganglioside</u> within cells, leading to toxicity.
- **Diagnosis**: by measuring the blood <u>hexosaminidase A</u> level or <u>genetic testing</u>.

CREUTZFELDT JAKOB DISEASE

- Transmissible Spongiform Encephalopathies (TSE)
 - Contagious brain disease whose degenerative process gives the brain a **sponge-like appearance**.
 - Bovine Spongiform Encephalopathy (BSE)
 - Creutzfeldt-Jakob Disease (CJD)
 - Fatal familial insomnia
- **Prions** protein that can exist in **two** forms that differ only in their **3-D shape**.
 - Normal prion protein (synaptic protein) → <u>Development and learning and memory</u>
 - Accumulation of misfolded prion protein is responsible for TSE.
 - PrP^c (normal) and PrP^{sc} (prion infected)

- PrPSC-protease-resistant (prion protein also heat-resistant)
- Abnormal protein taken up into neuron by retrograde transport
- Stanley Prusiner (discovered 1986), Nobel Prize (1997)
- Encephalopathy gives the brain a 'swiss cheese'-like appearance

• Symptoms:

- Rapidly progressive dementia & memory loss
- personality changes & hallucinations
- **Physical problems** such as <u>speech impairment</u>, <u>jerky movements</u>, <u>balance and coordination dysfunction</u> (ataxia), changes in gait, rigid posture, and seizures
- Death
- Long incubation periods (4-40 years)
- 50,000 BSE-infected cattle are estimated to have entered the human food chain before its recognition in 1986

PARKINSON'S DISEASE

- A disease caused by <u>degeneration of the nigrostriatal system</u> the <u>dopamine</u>-secreting neurons of the substantia nigra (send axons to BG)
- Lewy Body abnormal circular structures with a dense core consisting of α-synuclein protein (presynaptic protein); found in dopaminergic nigrostriatal neurons of Parkinson's patients.
- 1% of people over 65
- Symptoms:
 - Muscular rigidity
 - Slowness of movement
 - Resting tremor
 - Postural instability
 - Difficulties with handwriting or making facial expressions
- Causes:

Mutation on chromosome 4

- Gene that codes for alpha-synuclein (SNCA) located in presynaptic terminal of DA cells
- Toxic gain of function (production of a protein w/ toxic effects)
- Dominant
- Abnormal SNCA becomes misfolded, forms aggregations - make up lewy bodies

Sporadic

- ~95% of cases
- Causes:
 - Toxins present in environment
 - Insecticides
 - Faulty metabolism
 - Unidentified infectious disorder
- Toxic chemicals inhibit mitochondrial functions which leads to the aggregation of misfolded alphasynuclein, in DA neurons, kills the cell

Mutation on chromosome 6produces an abnormal Parkin protein

- Recessive disorder
- Loss of function
- Normal Parkin plays a role in Trafficking defective/misfolded proteins to proteasomes for destruction (recycling)
- Defective Parkin:
 - Allows abnormally <u>high</u> levels of defective proteins to accumulate in dopaminergic neurons
 - Fails to ubiquinate abnormal proteins
 - Ubiquitination targets the abnormal proteins for destruction by the proteasomes
 - Kills the cell

• Treatment:

- Stimulation of subthalamus (deep brain stimulation)
 - Implant electrodes in subthalamic nucleus and attach a device that permits PD patient to electrically stimulate the brain.
 - Fewer side effects (compared to surgery)
- Gene Therapy: Genetically modified virus into the subthalamic nucleus of PD patients
 - Delivered a gene for GAD (enzyme that makes GABA)
 - Production of GAD <u>turned some of the glutamate neurons into inhibitory</u>, <u>GABA neurons</u>
 - Activity of GPi decreased, activity of supplementary motor area increased, symptoms improved.

HUNTINGTON'S DISEASE

- Aka Huntington's Chorea
- Degeneration of <u>caudate nucleus</u> and <u>putamen</u>
- Uncontrollable movements, jerky limb movements
- Progressive, cognitive and emotional changes
- Death (10-15 years)
- Cause:
- AD <u>mutation</u> in either of an individual's two copies of a <u>gene</u> called <u>Huntingtin</u>, which means any child of an affected person typically has a 50% chance of inheriting the disease.
- o Normal Huntingtin (htt)
 - Forms complex with clatherin, Hip1 and AP2
 - Involved in endocytosis and NT release
 - facilitates the production and transport of brain derived neurotropic factor (BDNF)
 - BDNF: neurotropic factor critical for the survival of neurons
 - produced in cortex and transported to basal ganglia
- o **Huntington's Disease**
 - Htt protein has abnormally long glutamine tract
 - May lead to <u>abnormal endocytosis</u> and <u>secretion of NTs</u>
 - Striatal death by apoptosis Caspase-3
 - Interferes w/ BDNF-2 ways:
 - Inhibits the expression of the BDNF gene
 - Interferes with the **transport** of BDNF from the cerebral cortex to the BG

Epidemiology:

- o The disease can affect both men and women
- Physical symptoms of Huntington's disease can begin at any age from infancy to old age, but usually begin between 35 and 44 years of age.
- About 6% of cases start before the age of 21 years with an <u>akinetic-rigid syndrome</u>; they progress faster and vary slightly.

• Neurodegeneration in the putamen

- First: Inhibitory neurons (GABAergic)
- Removes inhibitory control of motor areas in cortex (hyperkinetic)
- As the disease progresses, neural degeneration occurs in many other regions

• Inclusion bodies:

- o Role is <u>unclear</u> in Huntington's Disease
- Tissue infected with abnormal htt produces inclusion bodies
- o Neurons with inclusion bodies had lower levels of abnormal htt elsewhere in the cell, cell lived

longer than cells without inclusion bodies

o Neuroprotective?

ALZHEIMER'S DISEASE

- Degenerative brain disorder of unknown origin; causes progressive memory loss, motor deficits, and death.
- **Severe degeneration** of the:
 - 1. Hippocampus
 - 2. entorhinal cortex
 - 3. neocortex (prefrontal and temporal association areas)
 - 4. Locus coeruleus
 - 5. Raphe nucleus
- Signs:
- 1. Memory loss that disrupts daily life
- 2. Challenges in planning or solving problems
- 3. Difficulty completing familiar tasks at home, at work or at leisure
- 4. Confusion with time or place
- 5. Trouble understanding visual images and spatial relationships
- 6. New problems with words in speaking or writing
- 7. Misplacing things and losing the ability to retrace steps
- 8. Decreased or poor judgment
- 9. Withdrawal from work or social activities
- 10. Changes in mood and personality

Amyloid Plaque:

- = Extracellular deposit containing a dense core of defective β -amyloid (A β) protein surrounded by:
 - degenerating axons and dendrites
 - activated microglia
 - reactive astrocytes.

* Gene:

- encodes the production of the β-amyloid
 precursor protein (APP; ~700 a.a. long)
- APP is then <u>cut</u> in 2 places by secretases to produce β-amyloid protein
 - β-secretase
 - y-secretase
- Results in Aβ-40 or Aβ-42
- Normal brain ~95% of Aβ is short
- AD brain Aβ-42 is as high as 40%
 - Folds improperly and form aggregates
 - System cannot ubiquinate the high amounts of long Aβ proteins
- Aβ inside cell (not plaques) is the cause of neural degeneration
- Aggregated forms of amyloid (Aβ oligomers) interact with microglia, causing an inflammatory response that triggers the release of toxic cytokines
- trigger XS release of glutamate by glial cells, causes
 <u>excitotoxicity</u> (increased inflow of Ca2+ through neural NMDA receptors)
- Cause synaptic dysfunction and suppress the formation of LTP

Neurofibrillary Tangles:

- = a <u>dying neuron</u> containing intracellular accumulations of abnormally phosphorylated <u>tau-protein</u> filaments that formerly served as the cell's internal skeleton.
- The tau hypothesis states that excessive or abnormal phosphorylation of tau results in the transformation of normal adult tau into PHF-tau (paired helical filament)
 NFTs (neurofibrillary tangles).
- Tau protein (τ proteins, after the Greek letter) are:
 - a <u>highly soluble</u> microtubule-associated protein (MAP)
 - proteins that stabilize microtubules.
 - abundant in <u>neurons</u> of the <u>CNS</u> and are less common elsewhere, but are also expressed at very low levels in CNS astrocytes and oligodendrocytes.
 - Pathologies and dementias of the nervous system such as Alzheimer's disease and Parkinson's disease are associated with tau proteins that have become defective and no longer stabilize microtubules properly.
 - are the product of <u>alternative splicing</u> from a single gene that in humans is designated <u>MAPT</u> (microtubule-associated protein tau)
 - located on chromosome 17q21
 - Transport is disrupted, cell dies.

- Epidemiology:
 - o 10% of the population over 65 years old and 50% of the population over 85
 - o Alzheimer's is the sixth leading cause of death in the United States.

Treatment:

- o Decline in ACh levels
- Cholingeric agonists (AChE inhibitors)
- NMDA receptor antagonist (memantine)
- o **Immunotherapeutic** approach
 - Amyloid vaccine to reduce plaque deposits and improve performance on memory tasks in a transgenic mouse model
 - Mixed results
 - Dangerous side effects

MULTIPLE SCLEROSIS

Autoimmune demyelinating disease.

• The immune system attacks the protective sheath (myelin) that covers nerve fibers and causes communication problems between your brain and the rest of your body

Sclerotic plaques

Myelin damage:

- o myelin in the CNS becomes <u>detached</u> and eventually <u>destroyed</u>.
- This creates a lesion that may cause numbness, pain or tingling in parts of the body.

Epidemiology

- o More women than men
- o Late 20s-30s
- Childhood in colder climates
- Canada has amongst the highest MS incidence estimates in the world; 55,000 75,000

Treatment:

- O Interferon β
 - Modulates the responsiveness of the immune system
 - Treatment slows the progression and severity of the attacks

Glaterimer acetate (copaxone)

- Peptides composed of random sequences of glutamate, alanine and lysine (glu-ala-lys)
- May stimulate <u>anti-inflammatory responses</u>

Clinical/histopathology Pictures in the lecture:

√Creutzfeldt-Jakob Dz

↓Tay-sachs

Brain with damage (lesions or plaques) caused by MS

<-Parkinson's Dz

- Lewy Body

<-Huntington's Dz

healthy advanced alzheimer's

<-Alzheimer's

